MARKING SCHEME SET 55/1/A

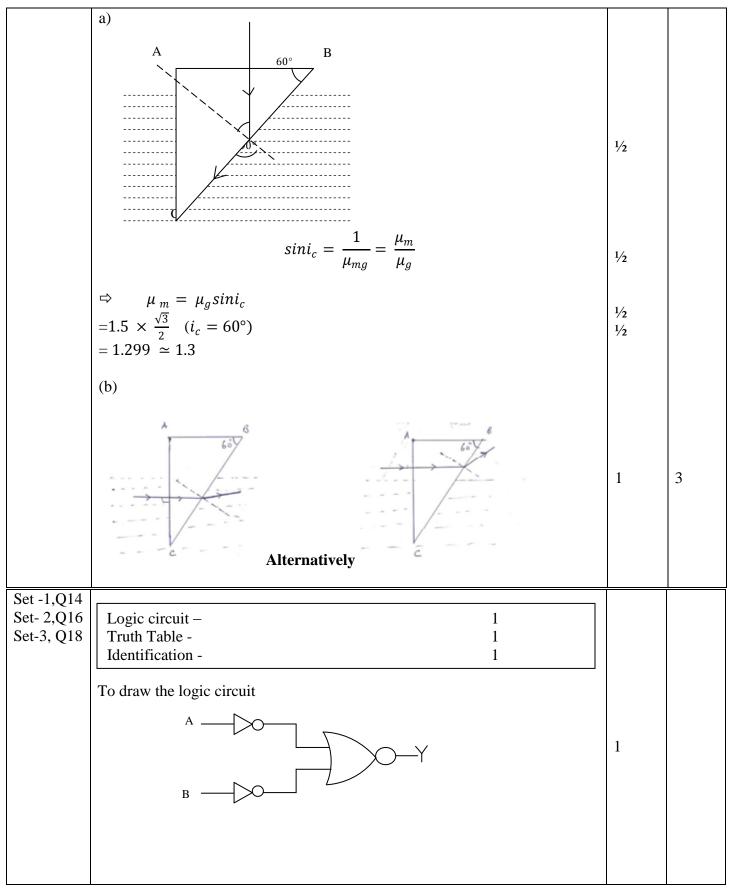
Q. No.	Expected Answer / Value Points	Marks	Total Marks
	Section - A		
Set -1,Q1 Set- 2,Q5 Set-3, Q2	Dielectric Constant of a medium is the ratio of intensity of electric field in free space to that in the dielectric medium. Alternatively It is the ratio of capacitance of a capacitor with dielectric medium to that without dielectric medium. Alternatively Any other equivalent definition S.I. Unit: No Unit	1/2	1
Set -1, Q2	$T_1 > T_2$	1/2	1
Set- 2, Q4 Set-3, Q5 Set -1, Q3	Slope of T ₁ is higher than that of T ₂ . (or Resistance, at T ₁ , is higher than that of T ₂) No induced current hence no direction.	1/2	1
Set- 2,Q2 Set-3, Q4		1/ .1/	1
Set -1, Q4 Set- 2,Q3 Set-3, Q1.	Critical angle depends upon the refractive index (n) of the medium and refractive index is different for different colours of light.	1/2 +1/2	1
Set -1, Q5 Set- 2,Q1 Set-3, Q3.	It rejects dc and sinusoids of frequency ω_m , $2\omega_m$ and $2\omega_c$ and retain frequencies ω_c , $\omega_c \pm \omega_m$. (Alternatively: It allows only the desired/ required frequencies to pass through it)		1
	Section - B		
Set -1, Q6 Set- 2,Q7 Set-3, Q10	Graph of V vs R Graph of I vs R (i) V vs R: $V = \frac{ER}{R+r}$	1	
	(ii) I vs R: $I = \frac{E}{R+r}$ (Award ½ mark in each if child writes only formulae)	1	2

Ajmer SET I Page 1 of 15

0 4 1 07		1	
Set -1, Q7	de Broglie Relation ½		
Set- 2,Q10 Set-3, Q8	Dependence of λ on n		
BC: 3, Q0	de Broglie wavelength $\lambda = \frac{h}{mv}$		
	$\frac{1}{mv} = \frac{1}{mv}$	1/2	
	$\therefore \lambda \propto \frac{1}{v} \; ; \; v \propto \frac{1}{n}$	1	2
	$\therefore \lambda \propto n$	1/2	
	∴ de Broglie wavelength will increase		
	Alternative method		
	$\lambda = 2 - m$ $\lambda = 2 \pi r_n (1 - \kappa^{-r_n})$	1	
	As $2\pi r_n = n\lambda$; $\lambda = \frac{2\pi r_n}{n} (\lambda \propto \frac{r_n}{n})$	1	
	$r_n \propto n^2$ $\therefore \lambda \propto \frac{n^2}{n} \Rightarrow \lambda \propto n$	1/2	
	$\therefore \lambda \propto \frac{n}{n} \Rightarrow \lambda \propto n$		
	∴ de Broglie wavelength will increase	1/2	2
	(Note: A good ony other alternative method)		
	(Note: Accept any other alternative method)		
Set -1, Q8	Definition of Wave front 1		
Set- 2,Q6	Definition of Wave front 1 Diagram 1		
Set-3, Q9	Wave front: It is the locus of points which oscillate in phase.		
	Or	1	
	It is a surface of constant phase.		
	Insident	1	2
	Incident planewave		
	• F		
	Spherical wavefront of radius f \mathbf{Or}		
	a) Characteristics & reason 1/2+1/2		
	b) Ratio of Velocity 1		
	b) Italia of Verseity		
	a) Frequency does not change, as frequency is a characteristic of the source	1/2+1/2	
	of waves.		
	(Alternatively: $\frac{v_1}{\lambda_1} = \frac{v_2}{\lambda_2} = n$)		
	b) The ratio of velocities of wave in two media of refractive indices μ_1 and μ_2		
	is $\frac{\mu_2}{\mu_1}$.	1	2
	μ_1 (Alternatively: $\nu_1 - \mu_1$)		
	(Alternatively: $\frac{v_1}{v_2} = \frac{\mu_1}{\mu_2}$)		

Ajmer SET I Page 2 of 15

Final Draft


17/3/2015

Set -1, Q9 Set- 2,Q8 Set- 3, Q7	Diagrams of AM and FM 1 Reason 1		
	$c_m(t)$ for AM 0 -2 0 0.5 1 1.5 2 2.5 3	1/2	
	$c_m(t)$ for FM 0 0.5 1 0.5 1 0.5 2 0.5 3 Why FM is preferred over AM'?	1/2	
	Low noise/ disturbance// reduced channel interference// more power can be transmitted// high fidelity. (Any one reason)	1	2
Set -1,Q10 Set- 2,Q9 Set-3, Q6	Formula 1/2 Calculation & result 11/2 Distance of the closest approach		
	$r_o = \frac{1}{4\pi \epsilon_0} \cdot \frac{2ze^2}{E_{\infty}}$	1/2	
	$=\frac{2\times9\times10^{9}\times80\times(1.6\times10^{-19})^{2}}{4.5\times10^{6}\times1.6\times10^{-19}}$	1	
	$=5.12 \times 10^{-14} m$	1/2	2
	Section – C		
Set -1,Q11 Set- 2,Q20 Set-3, Q15	Diagram 1/2 Force on each arm 1/2 Calculation of moment of couple 1 Orientation in stable equilibrium 1		

Ajmer SET I Page 3 of 15

			1
	\mathbf{F}_{2} \mathbf{F}_{2} \mathbf{F}_{3} \mathbf{F}_{1} \mathbf{F}_{1}	1/2	
	Force on each perpendicular arm $F_1 = F_2 = I b B$	1/2	
	Moment of couple = $I b B. a \sin \theta$	1	
	$\tau = I ab B sin\theta$	1/2	
	$\tau = I AB \sin\theta$ $\vec{\tau} = I \vec{A} \times \vec{B}$ When the plane of the loop is perpendicular to the magnetic field, the loop	1/2	3
	will be in stable equilibrium $(\vec{A} \parallel \vec{B})$, $\Rightarrow \theta = 0^{\circ}$ (If the student follows the following approach, award ½ marks only) $\vec{M} = \text{Equivalent magnetic moment of the planer loop} = I\vec{A}$ $\therefore \text{Torque} = \vec{M} \times \vec{B} = I\vec{A} \times \vec{B}$ $ Torque = \text{IAB}sin\theta$		
Set -1,Q12			
Set- 2,Q21	Production of em waves 1		
Set-3, Q16	Source of energy 1		
	Identification \frac{1}{2} + \frac{1}{2}		
	Electromagnetic waves are produced by accelerated / oscillating charges which produces oscillating electric field and magnetic field (which regenerate each other). Source of the Energy: Energy of the accelerated charge. (or the source that	1	
	accelerates the charges)	1	
	Identification:	1/2	
	(1) Infra red radiation	1/2	3
	(2) X - rays	, -	
Set -1,Q13 Set- 2,Q22 Set-3, Q17	a) To draw path of light ray in prism Formula and calculation of refractive index of liquid b) Tracing the path of the ray 1		

Ajmer SET I Page 4 of 15

Ajmer SET I Page 5 of 15

	Truth Table		
	A B Y 0 0 0 1 0 0 0 1 0 1 1 1	1	
	Identification : AND gate	1	3
	Or		
	Identification of logic operation in circuit (a) & (b) Truth table for circuit (a) & (b) Identification of equivalent gates 1/2+1/2 1/2+1/2		
	Logic Operation a) Y = A.B b) Y = A+B	1/2 1/2	
	Truth Table		
	a) A B Y 0 0 0 1 0 0 0 1 0 1 1 1	1/2	
	b) A B Y 0 0 0 1 0 1 0 1 1 1 1 1	1/2	
	Identification a) AND gate b) OR gate	1/2 1/2	3
Set -1,Q15 Set - 2,Q17 Set -3, Q11	Circuit diagram Working Wave forms and Input & Output Characteristic property 1 2 1 1/2 1/2 1/2 1/2		

Ajmer SET I Page 6 of 15

Final Draft

17/3/2015

		1	
	Centre-Tap Transformer Diode 1(D ₁) Centre A X Tap Diode 2(D ₂) R _L Output	1	
	Description of Working- During the positive half of input ac diode D_1 get forward bias and D_2 , reverse biased and during negative half of input ac, polarity get reversed, D_2 get forward bias and D_1 reverse bias. Hence, output is obtained across R_L during entire cycle of ac. Wave forms Input	1/2	
	Output V Management of the state of the stat	1/2	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2	
	Characteristic property Diede allege the appropriate property is informed based.		
	Diode allows the current to pass only when it is forward based.	1/2	3
Set -1,Q16 Set- 2,Q18 Set-3, Q12	Explanation of (i), (ii) and (iii) with justification 1×3 (i) Drift velocity will become half as $v_d \propto V$ (ii) Drift velocity will become half as $v_d \propto \frac{1}{L}$ (iii) Drift velocity will remain the same as v_d is independent of diameter (D).	1/2+1/2 1/2+1/2 1/2+1/2	3
Set -1,Q17 Set- 2,Q19 Set-3, Q13	Determination of magnetic field 1½ Determination of kinetic energy in MeV 1½		

Ajmer SET I Page 7 of 15

		1	
	Magnetic field $B = 2\pi mv/q$	1/2	
	$= \frac{2 \times 3.14 \times 1.67 \times 10^{-27} \times 10^7}{1.6 \times 10^{-19}} = 0.66T$	1	
	Final velocity of proton $v = R \times 2\pi v = 0.6 \times 2 \times 3.14 \times 10^7$ = 3.77 × 10 ⁷ m/s	1/2	
	Energy = $\frac{1}{2}mv^2 = \frac{1}{2} \times 1.67 \times 10^{-27} \times (3.77 \times 10^7)^2 j$ = 7.4 MeV	1/2 1/2	3
Set -1,Q18 Set- 2,Q11 Set-3, Q14	a) Calculation of distance of third bright fringe b) Calculation of distance from the central maxima a) Distance of third bright fringe- $y_3 = \frac{n\lambda D}{d}$	1/2	
	$= \frac{3 \times 520 \times 10^{-9} \times 1}{1.5 \times 10^{-3}}$ $= 1.04 \times 10^{-3} m \approx 1 mm$	1/2	
	b) Let n^{th} maxima of $650nm$ coincides with the $(n+1)^{th}$ maxima of $520nm$ $\therefore n \times 650 \times 10^{-9} = (n+1)520 \times 10^{-9}$ $\Rightarrow n = 4$	1/2 1/2	
	∴ The least distance of the point is given by $y = \frac{nD\lambda_1}{d}$ $= \frac{4 \times 1 \times 650 \times 10^{-9}}{1.5 \times 10^{-3}} m = 1.733 \times 10^{-3} m \approx 1.7 mm$	1	3
Set -1,Q19 Set- 2,Q12 Set-3, Q21	a) Pointing out and Reason of two processes b) Identification of radioactive radiations 1+1 1/2+1/2		
	a) Nuclear fission of E to D and C; as there is a increase in binding energy per nucleonb) Nuclear fusion of A and B into C; as there is a increase in binding energy per nucleon	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	
	b) First step - \propto particle Second step - β particle	1/2 1/2	3

Ajmer SET I Page 8 of 15

Set -1,Q20 Set- 2,Q13 Set-3, Q22	Three modes of propagation Brief explanation of reflection by Ionosphere Effect of increased frequency range 1½ 1/2		
	Three modes of propagation i) Ground Waves ii) Sky Waves iii) Space Waves	1/2 1/2 1/2	
	Ionosphere acts as a reflector for the range of frequencies from few MHz to 30 MHz. The ionospheric layers bend the radio waves back to the Earth.	1	
	Waves of frequencies greater than 30 MHz penetrate the ionosphere and escape	1/2	3
Set -1,Q21 Set- 2,Q14 Set-3, Q19	Definition of Stopping Potential and threshold frequency 1+1 Determination using Einstein's Equation 1		
	Stopping Potential: The minimum negative potential applied to the anode/plate for which photoelectric current become zero.	1	
	Threshold frequency: The minimum (cut off) frequency of incident radiation, below which no emission of photoelectrons takes place.	1	
	By Einstein's Equation $eV_0 = hv - \phi_0$ For any given frequency $v > v_o$, V_o can be determined. Stopping Potential $V_0 = \left(\frac{h}{e}\right)v - \frac{\phi_0}{e}$	1/2	
	as $\phi_0 = h v_0$ Threshold frequency, $V_0 = \frac{\phi_0}{h}$	1/2	3
Set -1,Q22 Set- 2,Q15 Set-3, Q20	Calculation of voltage across each capacitor in (a), (b) and (c) 1½ Explanation with reason for the change/no change 1½		
	(a) $V_L = 3V$ $V_R = 3V$ (L: Left, R: Right) (b) $V_L = 6V$ $V_R = 3V$ (c) $V_L = 2V$ $V_R = 3V$	1/2 1/2 1/2	
	Reasons (a) No change – (potential same on both capacitors as $(V_L = V_R)$) (b) Charge on left hand capacitor will decrease ($V_L > V_R$) (c) Charge on left hand capacitor will increase ($V_R > V_L$)	1/2 1/2 1/2	3

Ajmer SET I Page 9 of 15

Set -1,Q23	(a) Naming the principle involved 1		
Set- 2,Q23	(b) Explanation 1		
Set-3, Q23	(c) Two qualities 2		
	(+)		
	(a) Metal detector works on the principle of resonance in ac circuits.	1	
	(b) When a person walks through the gate of a metal detector, the impedance	1	
	of the circuit changes, resulting in significant change in current in the		
	circuit that causes a sound to be emitted as an alarm.		
	(c) Two qualities		
	(i) Following the rules/regulations		
	(ii) Responsible citizen	1+1	4
	(iii) Scientific temperament		
	(iv) Knowledgable		
	(Any two)		
	Section - E		
Set -1,Q24	(a) Drawing labeled ray diagram 1½		
Set- 2,Q26			
Set-3, Q25	(b) Deducing relation between u, v and R 2½		
	(c) Obtaining condition for real image 1		
	From the diagram :	11/2	
	$\angle i = \angle NOM + \angle NCM$	1/2	
	$\angle r = \angle NCM - \angle NIM$	1/2	
	By Snell's law,		
	$n_1 \sin i = n_2 \sin r$	1/2	
	<u>-</u>		
	Substituting for i and r. and simplifying, we get	1/2	
	$\frac{n_1}{OM} + \frac{n_2}{MI} = \frac{n_2 - n_1}{MC}$	/2	
	OM MI MC		
	Substituting values of OM, MI and MC $n_2 - n_1 - n_2 - n_1$	1/2	
	$\frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$	/ 2	
		<u> </u>	

Ajmer SET I Page 10 of 15

Final Draft

17/3/2015

(b)Condition for real image: V is positive

 $\because \frac{n_2}{v} > 0$ From the derived relation , we have $\frac{n_1}{|u|} < \frac{n_2 - n_1}{R}$

$$\therefore |u| > \frac{n_1 R}{n_2 - n_1}$$

1/2

1/2

5

OR

- 11/2 (a) Ray diagram Derivation of expression for magnifying power 11/2
- (b) Effect on resolving power in each case; with justification 1+1

11/2

(Award 1 mark if the student draws the diagram for image at distance of distinct vision, deduct ½ mark for not showing the direction of Propogation of ray)

Derivation:

Magnification due to objective

$$m_o = \frac{L}{f_o}$$

1/2

Magnification due to eyelens

$$m_e = \frac{D}{f_e}$$

1/2

Total magnification $m=m_o m_e$ $m_o = \frac{L}{f_o}.\frac{D}{f_e}$

$$m_o = \frac{L}{f_o} \cdot \frac{D}{f_e}$$

1/2

- (b) The resolving power of microscope
- (i) Will decrease with decrease of the diameter of objective lens as resolving power is directly proportional to the diameter

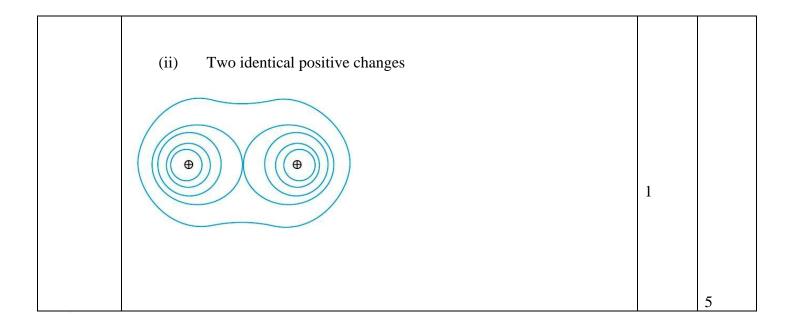
5

Ajmer SET I Page 11 of 15

Final Draft 17/3/2015

	(ii) Will decrease with increase of the wavelength of the incident light as resolving power is inversely proportional to the wave length	1	
Set -1,Q25 Set- 2,Q24 Set-3, Q26	(a) Faraday's law1(b) Explanation with example2(c) Derivation for induced emf2		
	(a) Faraday's law – "The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic flux through the circuit." (Alternatively: Induced emf = $\frac{-d\phi}{dt}$)	1	
	(b) A bar magnet experiences a repulsive force when brought near a closed coil and attractive force when moved away from the coil, due to induced current. Therefore, external work is required to be done in	2	
	the process. (c) Since workdone is moving the charge 'q' across the length 'l' of the conductor is W=qvBl Since emf is the work done per unit charge	1	
	$\mathcal{E} = \frac{W}{q}$ $\mathcal{E} = Blv$	1	5
	(a) Derivation for the current using phasor diagram Plot of graphs (i) and (ii) Phasor diagram for the average power Phasor diagram for the circuit: From the Phasor diagram: V makes an angle ' ω t' with axis, current 'I' lags behind the voltage 'V' by $\frac{\pi}{2}$, (makes an angle of $-(\frac{\pi}{2} - wt)$ with the axis.) \therefore , $i = i_m \sin \left[-(\frac{\pi}{2} - wt) \right] = i_m \sin \left(\omega t - \frac{\pi}{2} \right)$ [Award this 1 mark even if derivation is done by analytical method]	1/2	
		1/2	

Ajmer SET I Page 12 of 15


	Graph showing variation of voltage and current as function of ωt		
	$\frac{1}{\omega t_1}$ $\frac{\omega t_1}{\pi}$ $\frac{\omega t_2}{2\pi}$	1+1	
	Instantaneous power in LCR circuit: $p = v \times i$ $= v_{m} \sin \omega t \times i_{m} \sin(\omega t + \varphi)$ $p = \frac{v_{m} i_{m}}{2} \left[\cos \varphi - \cos(2\omega t + \varphi) \right]$ average power $P_{av} = \frac{v_{m} i_{m}}{2} \cos \varphi$	1/2 1/2	
	$P_{av} = \frac{v_m}{\sqrt{2}} \frac{i_m}{\sqrt{2}} \cos \varphi$	1/2	
	$P = V_{eff} I_{eff} \cos \phi$	1/2	5
Set -1,Q26 Set- 2,Q25 Set- 3, Q24	a)Statement of Gauss law Explanation with diagram b)Magnitude and direction of net electric field in (i) and (ii) 1½ +1½		
	(a) Gauss Law: Electric flux through a closed surface is $\frac{1}{C}$ times the total		
	charge enclosed by the surface.	1	
	Alternatively: $\phi = \frac{1}{\epsilon_0}$. q		
	The term q equals the sum of all charges enclosed by the surface and remain unchanged with the size and shape of the surface. Alternatively- The total number of electric field lines emanating from the enclosed charge 'q' are same for all surfaces 1,2 &3	1/2	
		1/2	
	(b) We have $ E_1 = \frac{\sigma}{\epsilon_o}$; $ E_2 = \frac{2\sigma}{\epsilon_o}$	1	
	(i) Between the plates	1	
	$E_{in} = E_1 + E_2$		
	Aimer SET I Page 13 of 15 Final Draft 17/3/2015	5:08 p.	***

Ajmer SET I Page 13 of 15

Final Draft 17/3/2015

σ , 2σ 3σ	1/2	
$= \frac{\sigma}{2\epsilon_o} + \frac{2\sigma}{2\epsilon_o} = \frac{3\sigma}{2\epsilon_o}$ (Directed towards sheet '2')	72	
(ii) Outside near the sheet '1' $E_{out} = E_2 - E_1$ $= \frac{2\sigma}{2\hat{\epsilon}_o} - \frac{\sigma}{2\epsilon_o} = \frac{\sigma}{2\epsilon_o}$ (Directed towards sheet '2')	1/2	5
OR		
a) Definition of electrostatic potential and SI unit $1+\frac{1}{2}$		
Derivation for the electrostatic potential energy 1+½ b) Equipotential surface for (i) & (ii) 1+1		5
a) Electrostatic potential: Work done by an external force in bringing a unit positive charge from infinity to the given point		
SI unit- volt or J/C) Net work done in moving charges q_1 . q_2 & q_3 from infinity to A, B as C respectively	and $\frac{1}{\frac{1}{2}}$	
$W = 0 + q_2 V_{13} + q_3 (V_{13} V_{23})$		
$= \frac{1}{4\pi\epsilon_0} \frac{q_1q_2}{r_{12}} + \frac{1}{4\pi\epsilon_0} \left(\frac{q_1q_3}{r_{13}} + \frac{q_2q_3}{r_{23}} \right)$	1/2	
But potential energy of the system is equal to the work done.	1/2	
$\therefore U = w = \frac{1}{4\pi\epsilon_0} \left(\frac{q_1q_2}{r_{12}} + \frac{q_1q_3}{r_{13}} + \frac{q_2q_3}{r_{23}} \right)$ (Award these 1 mark if the student directly writes the expression for U)	1/2	
(b) Equipotential surface due to		
(i) An electric dipole		
	1	

Ajmer SET I Page 14 of 15

